Amino Acid and Peptide Salts for CO₂ Removal

Bingyun Li,*,# Bingbing Jiang,* Daniel Fauth,^ McMahan Gray,^ Hennry Pennline,^ George Richards&

*Department of Orthopaedics, School of Medicine, WVNano Initiative, West Virginia University, Morgantown, WV 26506

Research or Market Need:

- Fossil fuels the main energy supply in the world.
- Approximately 36% of the U.S.'s anthropogenic CO₂ is produced from fossil-fuel-burning power plants.
- Current CO₂ capture approaches (e.g. MEA) are toxic and have high inherent operating costs.
- Global warming !!! Global climate change initiative (2002).
- Our goal is to develop advanced (e.g. *low toxicity*, *rapid* CO₂ transport, *high* CO₂ capture capacity) solid sorbents to capture CO₂.

Our Approach and its Advantages:

2 Tig. 1. Animo aciu, pepu

- Develop a new type of solid sorbents with *high biocompatibility* to human being and environment, *high oxygen stability* and *high capacity* for CO₂ capture, using amino acids and peptides.
- Amino acids and peptides are unique and could be the best candidates for CO₂ removal: *biocompatible*, *superior oxygen stability*, *negligible volatility*, *superior capacity*, *versatility*, and may be "*friendly*" to enzymatic catalysts. They may also enhance selectivity of membranes.

Benefits: Our developed amino acid and peptide sorbents may lead to safely and economically capturing of CO₂, and may lead to breakthroughs in CO₂ capture technologies.

Fig. 1. Amino acid, peptide, and their unique structures and products.

Fig. 2. Concept: Amino acids and peptides applied in sorbent, solvent and membrane systems for CO₂ removal.

^{*}National Energy Technology Laboratory – Institute for Advanced Energy Solutions

[^]US DOE, NETL, Pittsburgh, PA 15236; &US DOE, NETL, Morgantown, WV 26507